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Abstract We develop the twI of quantum diffusion (i.e. Hilbert-space-valued stochastic 
differential equations) for dissipative quantum systems. The aims are to find passible 
limilations to this approach and to investigate new pictures of open quantum systems. 
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rotational symmetry. We also impose the condition that the spin-coherent states remain 
coherent during the dissipative evolution. We present a new quantum diffusion equation 
that satisfies the above conditions and that is the unique quantum diffusion satisfying 
Pcrcival's condition (d+)2  = 0. 
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1. Introduction 

Dissipative quantum dynamics is usually described as a reduced dynamics of the 
system coupled to its environment [1,2]. This approach goes back to Pauli [3] and 
describes the system of interest by a mixed density operator. Dissipative Schrodinger 
equations have also been considered, as pragmatic tools describing the system alone 
[see the ioiiowing references: i4j for a review; i W j  for concrete exampies; iSj for 
applications to squids; [9] for applications to quantum tunnelling; [lo] for applications 
to quantum optics). Such equations are deterministic; the system is then described at 
all times by one pure state. 

Measurements are specific environments in which information is extracted from 
the system. This is as true for quantum systems as for classical ones. In the quantum 
case, the evolution of the system is usually described differently in such measurement- 
like situations: in addition to the density operator the system is also described by 
an explicit statistical mixture of pure states. In the ideal case, the latter is given 
by the projection postulate. There have recently been several attempts to describe 
the evolution of a quantum system during a measurement by means of stochastic 
equations in Hilbert spaces (quantum diffusions)-see [ll-201. 

This .rti& & fie! &gt me~gie.men& but we shall use the same kind of stochas- 
tic equations to describe dissipative quantum systems in general, and arbitrary spin 
relaxation in particular. After all, if this approach is meaningful for the case of 
measurement-like situations, still an open question, it should also apply to the gen- 
eral case of dissipative quantum dynamics. 

OW5-447019U195165+12$04.50 @ 1992 IOP Publishing Ltd 5165 
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Let us be somewhat more specific. Let S represent the system under consideration 
and E its environment. If S and E interact, the state vector of S+& will, according to 
the Schrdinger equation, describe a situation in which S and E are heavily entangled, 
like two spin-4 in the singlet state. Then all the usual problem about quantum non- 
locality, universal non-separability, the many worlds and its many interpretations, 
Bell’s inequality and so on, follow. For instance, in the simple singlet-state case, the 
non-separability of the two spin-4 subsystems can be realized by registering the perfect 
correlation between measurements on each subsystem along parallel directions, or by 
measuring several correlations that violate the Bell inequalityt. But this requires that 
the relative axis of one spin with respect to the other one is known: one must know 
what parallel means. If one spin undergoes some precession, the relative axis will 
change: perfect correlation will hold for some non-parallel axis. If one still knows the 
relation, then Bell’s inequality can still be violated. If one loses track of the relation, 
then one can no longer design the experiment that would violate the Bell inequality. 
For the general case of a system S and its environment E ,  the complexity is such that 
one almost immediately loses track of the precise relation between S and E [23,24]. 
The discussion then turns around whether this should be interpreted as an entangled 
system but with hidden quantum correlations (perfect correlation still exists, but 
one does not know ‘which pair of axes are parallel’), or whether it represents a 
separated system for which the quantum correlations with the environment have been 
broken (no longer any correlation). From a practical point of view it amountS to 
the same thing. But let us make two remarks at this point. First a question: is 
it acceptable that the interpretation of our fundamental physical theory is based on 
the fact that it is practically impossible to find the error implicit in interpreting an 
extremely complicated entangled state as a mixture of separated (i.e. product) state? 
Second, if one tries to describe seriously the disentanglement of S + E ,  one is led 
to investigate some theories close to, but different from, quantum mechanics. In this 
way, limitations to this type of theory can be found [18,25] and different predictions 
from quantum mechanics can be evaluated with the aim of designing some crucial 
experimental tests. 

This has motivated Ghirardi et al 1261 and Bell [ZO] (see also Pearle [11,12], 
Penrose [27], KArolyhAzy [28], Shimony [is], Di6si [13-151, and Gisin [17,~18]) to 
promote the idea that quantum dynamics has to be completed by stochastic t e rm 
in the dynamics. The Ghirardi-Rimini-Weber model is the most developed of such 
‘completed pictures’. We do not see any good reason why the picture should be 
changed only for the case of measurement-like situations (i.e. conservative diffusions); 
we like to investigate the consequences of a more radical change, somewhat in the 
spirit of Percival’s new ‘correspondence principle’ [30]. One of Ghirardi-Rimini- 
Weber merits is that their proposal is valid at all times, not only for specific situations. 
However their proposal breaks most of the symmetries of quantum mechanics: q is 
strongly differentiated from p ,  spins are even stranger than before, etc. So the idea 
here is to apply the existing tools for the study of arbitrary evolutions of density 
operators and their corresponding Hilbert space diffusions. 

Actually, as we shall see, there are too many possible stochastic equations corre- 
sponding to a given dissipative evolution equation for density matrices [25], that is 
stochastic equations such that the average of the pure states over the ‘noise’ equals 
the mixed density matrix. We shall show that the one proposed in [16,18] lacks the 

t Note fhaf such a violation occurs for any non-product stafe 121,221 
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natural symmetry that one might expect for spin relaxation. We shall also be guided 
by the assumption that the 'correct' equation preserves coherent states, that is an 
initially spin-coherent state should remain coherent. 

The non-Hamiltonian terms that can appear on the right-hand side of an evolution 
equation for density operators pt are of the form (assuming complete positivity [31]) 
Bp, B+ - ;{ Bt B ,  p, )  where B is a linear operator. If B is self-adjoint, then two 
very different kinds of quantum diffusions can reproduce such terms on average. 
First, one with a fluctuating Hamiltonian d+* = -iB$, o d W, (the o denotes the 
use of a Stratonovich equation) with the standard Wiener process (dW,)* = dt; 
then the average over W, of the projector +,$$ follows such an equation [17]. The 
other quantum diffusion localizes the state vectors on the eigenspaces of B (see 
e.g. [18]) i.e. the quantum average (B),, changes with time, contrary to the first 
quantum diffusion, but in such proportions that the average over the noise of +,T,!$ 
follows the same equation. If B is not self-adjoint, then no stochastic Hamiltonian 
can reproduce the density-matrix evolution, hut there are more general stochastic 
equations for pure states whose average reproduces the density matrix. This article 
is about these latter terms and the corresponding dissipative quantum diffusions. 

In the next section we shall consider the spin-4 case and impose rotational sym- 
metry. In section 3 spin-coherent states are presented for completeness, and section 4 

where arbitrary spin relaxation is considered under the assumption that the coherent 
states are preserved by the (stochastic) evolution. The article ends, as usual, with 
some conclusions and perspectives, discussed in section 6. 

.---A- &h- ---- -Z A-*---:-:-*:- C-:-&:..- T&:- -_--"_-- C-- rh- --:- ---I:..- ---r:--  C 
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2. Example of the relaxation of spin $ with rotational symmetry 

The dissipative evolution equation for the density matrix pt representing a spin 4 in 
a magnetic field at zero temperature readst: 

P ,  = 2 U + P , C  - {U-U+,P, )  (2.1) 

where a* = (az + ia ) / 2 ,  U = (a,, ay ,  az ) are the Pauli matrices. The only sta- 
tionary solution of (2.1j is spin-up and all states tend asymptotically to this stationaly 
state. The corresponding quantum diffusion proposed in [16] and [ U ]  is given by the 
following It6 stochastic equation: 

d+, = &(a+ - ( o + ) + t ) l L i d € t  - (.-a+ - 2 ( ~ ) + , 0 +  + ( ~ ) + , ( a + ) + , ) $ t d t  (2.2) 

where (a*)$* = ($t/u+~+l)/($l/$l) and the Wiener process d t ,  satisfies d<l = dt.  
It is straightfonvard to verify that (2.2) preserves the norm of $,: dl+,l = 0 and 
from here on we assume that +, is normalized. The only stationaly solution of 
(2.2) is, again, spin-up. Furthermore the corresponding one-dimensional projector 

~ P I = i / r + i / j  '1 'f saticfips "-._"-.-" 

dPt =&[(U+ - ( a + ) + , ) P , + P , ( a -  - (a_ ) , , ) ld€ ,+ [2a+Pta-  - {a -a+ ,Pt} ]d t .  

t At finite temperature an additional term describes fluctuations via a fluctuating magnetic field 
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Note that the last term of this equation (the drift) equals the right-hand side of (2.1). 
Consequently the average over the Wiener process of the onedimensional projector 
(pure state) +$ +t equals f r .  

The equation (2.1) is manifestly invariant under rotation around the t-direction 
and this symmetly is physically obvious. But (2.2) lacks this symmetry, since U+ 

depends on the choice of x- and y-axis. A way to recover the rotational invariance is 
to add to (2.2) a similar term, with a second independent Wiener process, with axes 
rotated by 90°: 

N Gisin and M B Cibils 

U+ - e  irr.f4ute-i~0,/4 - - IO+. . 

Hence the rotational invariant equation corresponding to (2.1) is 

d+t = (U+ - (U+)+ , )  +t (d<t t idWt) 

- (U-.-+ - 2(u-)+to+ + b-)+,(U+)+J +tdt (2.3) 

where d<,2 = d W," = dt, d<,dWt = 0. Its Stratonovich form is particularly simple: 

d+t = ( U +  - (U+)+, )+,  ~ ( d t t  + idWr+2(u - )$~d t ) - (u -u+- (u -u+)$~)+ td t .  
(2.4) 

If et and qt represent the angles defining the direction (U)+, then, with q, = cos et, 
we have: 

= (-cos vt,  VI,  qt) 

where 

d<: = c o s q t  d<,-s inql  dW, dW; = s h i p ,  dct+cosipl dW, 

i.e. (d<;)2 = (dW;)2 = dt, d<;dW; = 0. This equation corresponds to 
f = ,/(I - qt ) / ( l  + 7,) of our classification [25].  

It is interesting to note that (2.3), contrary to (2.2), satisfies a condition intro- 
duced by Percival[30] from considerations about uniqueness of the quantum diffusion 
equations, namely d+, @ d+, = 0. We thus recover Percival's condition starting from 
physical considerations about symmetries. 

3. Spincoherent states-a reminder 

Here we briefly recall the main aspects of the notion of spin-coherent states. We 
refer to [32-341 for more information on the extensive work connected with these 
states. They are the analogues for spin systems of the well known coherent states 
for the harmonic oscillator (351 and they are often used to develop a phase-space 
approach to spin systems using functions on the sphere [36,37]. 
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Let 5 = ( S z ,  S,,S,) be the spin-s operators acting on C2"' and satisfying 
the usual commutations relations [S, , S,] = i e j  S I .  We choose and fix a value 
of s E { i , l , q ,  .. .} and we denote by Im) the S ,  eigenstates labelled by their 
corresponding eigenvalue (S,lm) = mlm), m = -s, - s  + 1 , .  . . , s - 1, s). A 
spin-s coherent state In) is then determined by a unit vector 

n = (-cos 'p, -sin Lp, q) q = cos e 

of the two-dimensional sphere S2.  More precisely, if we take the eigenstate Is) as a 
fundamental vector the spin-s coherent state In) is defined by [32,34] 

In) = R(n)ls) ( 3 4  
where R(n) = is the unitary representation of a rotation through the angle 0 
about the axis k = (-sinq,cos'p,Oj ortnogonai both ton and e, = (ij,ij,ij. Tinis 
rotation is the simplest one which transports e, onto n and, clearly, this definition of 
k is valid for any n excluding that corresponding to the south pole n = ( O , O ,  -1). 
Thus, in accordance with the general reasoning, the spin-coherent states are indexed 
by points of Sz which may therefore be considered as the phase space of the 'classical' 
spin. 

south pole, n - C = &'+ tan(e/2), one can express In) in term of the S, eigen- 
states and of the angular variables (0,'p). The explicit form that one obtains is 
[32,341 

.LA -.------̂ _L:̂  ^C .L̂  --LA-- --.- &I-^ ,- _I^..^ .I. "1. 11.- u ~ m g  ULG wcIicugapmL p ~ u ~ ~ ~ u v i r  UL LUG q ~ c r ~  uiiiu LUG v p a w  rruuuyr LUG 

Hence, in our representation, In) is singular at the south pole whereas the state 
!ez), with e, pointing upwards, is naturally identified with the spin-up state Is). 
Furthermore, the system of spin-coherent states is overcomplete and from (3.2) one 
deduces [36] 

. n'+ e , .  n + n. n' + ie, . n' Ani- 

4(1+e,.n')(l+e;n) ' ? IS  (n'ln) = 

This clearly shows that the states In) are normalized but are not mutually orthogonal. 
For completeness we add the two following formulas which are derived from (3.2): 

We recall also that a spin-coherent state can be characterized by any of the following 
equivalent properties: 

(3.3a) 
(3.36) 

(3.3c) 

(3.3d) 
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where (S), (S:) ,  - (S,):. In other words we have: (i) 
the spincoherent state In) is an eigenvector for the operator n . S with maximal 
eigenvalue; (ii) the expectation value of the S operator on coherent state In) is the 
vector of length s pointing in the n direction; (iii) the spin-coherent states minimize 
the sum of the Heisenberg uncertainties. The expressions ( 3 . 3 4  can be deduced 
from the definition (3.1) and the transformation law R(n)S,R(n)-' = n.S [32-341. 

Finally, to conclude this reminder, we point out that it is possible to obtain 
expiicii formuiae for expectation vaiues of very generai spin-observabies on the set 
of coherent states In). This can be done, for instance, by applying the formalism 
developed in [36]. In particular, for latter use, we compute the In) expectation value 
of the anticommutator {a. S,  b . S }  where a and b are arbitraly three-dimensional 
vectors. One gets: 

N Gisin and M B Cibils 

(nlsln) and (AS,)' 

({U. S , b .  SI), = ~ ( 2 s  - l ) ( a . n ) ( b .  n )  + sa. b .  (3.4) 

This expression is easily obtained using the differential form of the spin-operator 
introduced in [36]. More precisely, in [36] it is proved that one has for any spin- 
observable A 

F A ) ,  = I(nHA)n (3.5) 

~ ( n )  = sn - t n ~ v , ,  - an A ( "  AV, , ) .  

where I ( n )  is the following first-order differential operator 

(3.6) 

Here V,, denotes the gradient with respect to the variables (n , , ny ,  n,) and (3.5) 
means that the In) expectation value of the product SA is obtained directly by 
applying the operator on the In) expectation value of A which is a well defined 
function on the sphere Sz. The adaptation of this result to our context gives 

( { ~ . s , b . S l ) , ,  = ( ( a . s ) ( b . s ) ) , +  ( ( b . S ) ( a . S ) ) ,  

From the definition (3.6), a straightforward calculation yields 

u k I ( n ) n k  = $ [ ( Z s - l ) ( a . n ) n - i ( n A a ) t a ]  (3.8) 
k = Z , Y , Z  

and an equivalent formula with the vector b instead of a. Then one immediately 
finds the right-hand side of (3.4) by inserting (3.8) in (3.7). Choosing now a = e, 
and b = el in (3.4). e, and e l  being the unit vectors along the k and I axis, one gets 
the useful formula for the anticommutator between S, and SI  

({S,,S,}),,  = 4 2 s  - 1)n,n,  + sskl (3.9) 

and, in particular, when I = k one finds 

(3.10) 
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4. The deterministic spin-relaxation example 

Before studying the case of stochastic relaxation we present in this section a result 
for a deterministic dissipative equation. This result will he useful for the next section. 
The deterministic dissipative equation is motivated by simplicity 171, by its natural 
implementation in Hilbert space formalism 1381 and by the models that have been 
developed based on it [9,10,39]. 

The equation considered in this section reads 

A = ( ( S A ,  - S J  *i (4.1) 

and describes the relaxation of a spin s. This can he seen by noticing that from (4.1) 
one gets 

We prove the following result: 

Theorem. Assume that the evolution of the state Gi is governed by (4.1). If, at time 
t = 0, $, In,) is a spin-s coherent state, then: 

(i) the state remains coherent during the entire evolution: 11, = In(t)) for all t ;  
(ii) the evolution equation for the unit vector 

n ( t )  = ( f i c o s v t , m s i n p i , q i )  E s ~  (4.2) 

which determines the spin-coherent state at time 1 is given by 

c(t) = n ( t )  A [n( t )  A e,] (4.3) 

or in terms of angular variables 

+,=o f i i = q , - 1 .  2 

Remarks. 
(i) The equation (4.3) has been introduced by Landau and Lifschitz for a phe- 

nomenological description of magnetic moment relaxation 140,411. 
(ii) Note that if the right-hand side of (4.1) is multiplied by a complex-valued time- 

dependent function, then the first conclusion of the theorem remains valid. Indeed, 
this is obvious for the real part of the function and, for the imaginary part, it follows 
from the well known fact that rotations must preserve spin-coherent states [32]. 

(iii) If in (4.1) we substitute S, by the harmonic oscillator Hamiltonian ata, then 
the resulting equation preserves the harmonic coherent states 171. 

Proof. Let us define 
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First, one remarks that from ( 3 . 3 ~ )  one has 

N Gisin and M B Cibils 

Gr = In(t)) d F ( t )  = 2 .  (4.4) 
Since, by hypothesis, $,, Ino) is initially a spincoherent state, (4.4) implies that 
F ( 0 )  = sz. Hence in order to prove the first assertion of the theorem it suffices 
to show that F(1)  remains constant during the evolution. With this end in view, we 
remark that if $t evolves according to (4.1), then for every r such that F ( T )  = s2  

one has = 6. indeed, irom (4.ij a straightioward caicuiation yieias 

' ( t )  =' (sk)$t (z(sk)$<(sz)$t - ({sk>sz})$t) ' (4.5) 
k = s , y , i  

If F ( T )  = 2, it follows by (4.4) that $r is given by a spincoherent state In(.)). 
Then one can calculate (4.5) at time r by computing explicitly the n( r )  expectation 

I ,  Fe,.-_ .I.̂ I.? n\ --_I I- *L\ n-- -.... vauc.s (')n(r) lluul Lllc c x p l ~ S l U n S  (AY)  allu (3.3~7). ULlC gCLS; 

P ( r )  = 2 s n k ( r ) [ 2 s 2 n k ( r ) n , ( r )  - S(ZS - l )nk(r )n , ( r )  - shk,]  
k = z , y , z  

= 2s2 n k ( r ) [ n k ( r ) n l ( r )  - hkZ] = 0 .  
k = r , y , z  

From this result and the fact that F ( 0 )  = s2, it obviously follows that F ( t )  = s2 
for all t .  Together with (4.4) this implies +t = In(t)) for all t and proves the f is t  
part of the theorem. The second assertion follows from a straightfonvard calculation 
which uses (3.36) and (4.1). One has: 

I d  1 
(4.6) ~ ( t )  = ;z(s)n(tj = ;['(s)n(tjiSz)n(t) - ( {s ,  Sz})n(t)I . 

?i=(t) = nz( t )nz( t ) ,  ?i,(t) = ny(t)n,(t) 

Inserting the explicit formulae (3.9) and (3.36) into (4.6) one obtains the following 
set of equations for the three components of the vector n( t ) :  

?i,(t) = n,(t)2 - 1. 
These equations can be expressed in a more compact form as 

h(tj = m ( t ) ~ i n ( t j ~ e ~ j .  

5. Quantum diffusion for arbitrary spin relaxations 

AU spin-+ states are coherent but, obviously, this is not the case for arbitrary spin s. In 
this $&an w e  intradgc~ y a n ! ~ m  diffijsicx equation! for &i&wy ~pin-5 relawation 
that preserve coherent states. This means that the solution of the stochastic equation 
for an initially coherent state is itself coherent (with probability 1) at all times. 

First let us notice that neither the generalization to arbitrary spin of (2.2) nor 
(2.4) preserve coherent states. This is easily seen on the Stratonovich form of the 
equation since the Stratonovich product follows the same rules as ordinaly analysis. 
The f i t  term of (2.4) has the same form as the deterministic spin relaxation (4.1) 
studied in the previous section and thus does preserve coherent states (see the second 
remark after the theorem of section 4). However, the second term has a different 
form, involving not only S, operators, but also Si  operators. A compensation for 
this last term is then necessaly; this can be done and the result is contained in the 
next theorem. 
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Theorem. Assume that the evolution of the state & is governed by the following 
Stratonovich stochastic differential equation: 

d+, = (st - (St)++) d+ 0 (df, + idW, + 2(s-)$,dt) 

- (S-st - (S-S+)+<) +tdt 

where Et, W,, and xt are three independent Wiener processes with dEf = dW,” = 
dx: = dt. If, at time t = 0, +, E In,) is a spin-s coherent state, then: 

(i) the evolution equation for the density matrix pt is 

Pt = 2StPtS- - tS-S+,P,l- 4[Sz[S2,Ptll (5.2) 

(ii) the state remains coherent during the entire evolution: +, = In(t)) for all t 

(iii) one has: 
where n( t )  is defined by (4.2); 

dvt  = &(l - vf)dx,  + (1 - v t ) m d E ;  + 2[1 - vf + (s - $)(I - $)]dt  

(5.3) 

where 

dE; = cos ptdE, - sin p td  W, 

dW; =sinp,d{ ,  +cosp,dW, 

i.e. (dE;)2 = (dW;)2 = dt ,  dE;dW; = O .  

( 5 . 5 ~ )  

(5.56) 

Remarks. 
(i) Note that the above xt noise term could also be complexified as d x t  + id%,. 

The same conclusion about preservation of coherent states holds, since the imaginary 
part would simply impose a rotation around the z-axis with a stochastic angular 
velocity. 

(ii) For the harmonic oscillator, if one replaces in (5.1) the operators S, by the 
creation operator a+,  S- by the annihilation operator a and S, = i[S-, S,] by 
[ a ,  a+] ,  that is by a multiple of the identity, then the equation corresponding to (5.1) 
also preserves the (harmonic oscillator) coherent states [IS]. 
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Proof. 
(i) Equation (5.2) is a direct consequence of [U] and of the independence of the 

three Wiener processes E , ,  W, and x,. 
(ii) To prove the second assertion of the theorem it suffices to remark that since 

S- S ,  + Sj = s( s+l) - S,, all terms in (5.1) have the same form as the deterministic 
spin relaxation (4.1). Thus, the same proof as the theorem of section 4 holds here 
since the Stratonovich product is used in (5.1). 

(iii) To obtain (5.3), iet us first compute the drift term b of dq, (that is the 
term multiplying dt). Since (5.3) is written in the It6 form, its drift term equals the 
evolution of its average: 

N Gisin and M B Cibils 

But the latter is given by the evolution (5.2) of the density matrix. Hence, using the 
cyclic property of the trace we have 

1 
b = ;[2(S-SzSt)_(,) - ~ t ~ z > ~ ~ ~ + ~ ~ ~ ~ , ) l  

and the expression found in (5.3) for b follows from a straightfonvard calculation 
which uses (3.3b) and (3.10). For the stochastic terms of (5.3) we first compute 
the coefficient of dXt  (note that for the stochastic terms one need not distinguish 
between ItB and Stratonovich equations, since the transformation from the one to the 
other affects only the drift term). This computation is identical to the one applied to 
(4.5) in section 4. One has 

and one gets the expression which appears in (5.3) using (3.3b) and (3.10) again. For 
the coefficient of dt;, the computation is similar. One gets 

1 
-[(szst)n(q S - (sz)n(t)(st)n(t)l N E ,  + idW*1 

+ -[(S-SJ,(,) S - (sz)4tp-)"(t)I [ ( I S ,  - idWt1 
1 

As before, using (3.3b), (3.9) and the definition (5.h) one finds the expression in 
(5.3). Finally, the computation of d p ,  to prove (5.4) is lengthy but without difficulty, 
keeping in mind that t a n  pt = (Sy)n(l)/(Ss)n(f), and using (5.56). 

6. Conclusions 

We have seen that because of symmetry reasons and in order that the evoiutioii 
preserves coherent states we must introduce complex-valued Wiener processes. The 
equation associated to a Lindblad term 

2Bp,Bt - {BfB,p,} (6.1) 
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for any linear operator E is thus 

d$, = ( B  - (B)+, )  

This equation satisfies (d$,)*  = 0. Percival, following Di6si. has proven that the 
correspondence between (6.1) and a Hilbert space diffusion is unique if one imposes 
the condition (d&)* = 0. Equation (6.2) (possibly with a sum over several operators 
Ei with independent Wiener processes) is thus the explicit form of the diffusion 
characterized by Di6si and Percival. Although this equation was derived in the context 
of spin relaxation, the other standard example of dissipative quantum dynamics, that 
is the damped harmonic oscillator, also fits nicely in this frame. Indeed, defining B = 
a (the annihilation operator), and adding the usual Hamiltonian term -ia+a$,dt 
one obtains a description of the damped quantum oscillator that respects the p ,  q 
symmetry and that preserves the coherent states. 

Equation (6.2) looks highly nonlinear. Let us show that this is not so. The 
nonlinear terms used to shift the operator E and B+B to zero mean value affect 
only the norm of $,. They are chosen such that the norm I+, I remains constant. But 
one can work with unnormalized state vectors +, (for finite times, so that the norm 
does remain strictly positive), then the nonlinearity in (6.2) is a shift of the C-valued 
noise. 

( d t ,  t idW, t 2(Et )+<dl )  - (B'B - (B'B),,) $,dt .  
(6.2) 

Note that for such a non-norm-preserving equation 

d+, = B$,(dE, + idW, t Z(Et),,dt) - BfB$ ,d l  

the Stratonovich and the It6 equations have exactly the same relatively simple formt. 
The nonlinear term in this last equation can still be removed with a Girsanov 

transformation [43]. One then has a linear equation which is the analogue for our 
(6.2) of Pearle's 'raw ensemble' [12]. 

Note also that in the case of self-adjoint operators B,  our investigation suggests 
that the two quantum diffusions that we mentioned in our introduction should be 
mixed in equal proportion. 

It is our hope that (6.2) will turn out to be simpler and physically more instructive 
than (6.1) in some specific practical cases. We look for fresh intuition for the descrip- 
tion of open quantum systems. Our approach could be specially illustrative and useful 
in numerical computations of nonlinear quantum dynamics of open systems 1441. We 
also expect to apply it to situations in which measurements on open quantum sys- 
tems are crucial, like in the experimental tests of the Zeno paradox [45], the recent 
experiments on quantum jumps 1461 in quantum optics and to the many forthcoming 
experiments that become feasible thanks to the recent and ongoing breakthrough in 
technology. 
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